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Local and global Gabor features for

raised character recognition
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Conventional Gabor representation and its extracted features often yield a fairly poor performance in
extracting the invariance features of objects. To address this issue, a global Gabor representation method
for raised characters pressed on label is proposed in this paper, where the representation only requires
few summations on the conventional Gabor filter responses. Features are then extracted from these new
representations to construct the invariant features. Experimental results clearly show that the obtained
global Gabor features provide good performance in rotation, translation, and scale invariance. Also, they
are insensitive to illumination conditions and noise changes. It is proved that Gabor filters can be reliably
used in low-level feature extraction in image processing and the global Gabor features can be used to
construct robust invariant recognition system.

OCIS codes: 100.0100, 100.3010, 100.5010, 100.5760.

Since raised or indented characters are more changeless
for spot and time-change than printed characters, they
are widely used on some industrial products. However,
images of such characters are of poor contrast because the
characters have the same color and material as the back-
ground. So recognition of raised or indented characters
is difficult than that of conventional optical characters.

To date, only a few literatures appear on study-
ing raised or indented characters and two different ap-
proaches have been developed. The first one is to binarize
the gray-scale image by choosing an appropriate thresh-
old and then extract feature on the binary images[1].
However, for low-quality images, the binarization process
will inevitably result in information loss and generate a
lot of broken strokes and noise into the binary images.
The other approach works directly on gray-scale images.
This approach includes the following categories: 1) direct
topographical feature extraction[2] or edge detection from
gray-scale images[3]; 2) global feature extraction by cir-
cular projection and discrete cosine transform[4]. These
methods obtain some improvement in some cases, claim-
ing success on various data. However, in practical ap-
plications, some problems still exist. For example, topo-
graphical features and edge detectors have poor perfor-
mance on images with noise or dirty background. Circu-
lar projection is sensitive to the accuracy of center point
location. The novel feature extraction method based on
Gabor filters proposed tries to solve these problems.

Gabor filters[5] have optimal joint localization, or res-
olution in both the spatial and the spatial-frequency do-
mains. Also, the Gabor-filter-based features seem to be
similar to features extracted by humans and, thus, may
be effective to be classified. Because of these properties,
Gabor filters have been widely applied to computer vi-
sion, texture analysis, face recognition, and optical char-
acter recognition[6−10].

The two-dimensional (2D) Gabor functions are Gaus-
sian functions modulated by complex valued sinusoids of
given frequencies and orientations in the space domain,

and shifted Gaussians in the spatial-frequency domain.
These Gabor functions are parameterized by five values
which control the orientation, the radial frequency band-
width and the center frequency.

The 2D Gabor function is defined as

Gφ(x, y) = G(x, y, σx, σy, fx, fy, θ)

= e
−((

X(x,y,θ)
σx

)2+(
Y (x,y,θ)

σy
)2)

· ei(fx·x+fy·y), (1)

where φ = (σx, σy, fx, fy, θ) is the vector form of the five
Gabor parameters and X (x, y, θ), Y (x, y, θ) are the ro-
tated (x, y) coordinates,

X (x, y, θ) = x cos (θ) + y sin (θ) ,

Y (x, y, θ) = −x sin (θ) + y sin (θ) .

This 2D Gabor filter consists of a Gaussian envelope
multiplied by a complex sinusoid. The Gaussian enve-
lope has a spatial extent and a bandwidth determined
by (σx, σy) with the major axes rotated by an angle θ
about the z-axis. The complex sinusoid has 2D frequency
(fx, fy) and an orientation γ = tan−1(fy/fx).

The parameters of the Gabor filters were chosen ac-
cording to the characteristics of the raised characters.
Since the width of the character strokes has relation to
the frequency, only one properly selected frequency f is
needed to extract the stroke information of the charac-
ters. Wang et al.

[10] found that the Gabor response got
its maximum value when the frequency value was two
times of the width of the Chinese characters. Something
different to be noted is that because of the uneven gray
distribution of the images, when the width w is defined
as half value of the distance between the inner and outer
outlines of the character strokes, the Gabor filters are
most sensitive. So, the frequency fx, fy is defined as

fx = fy = f0 =
1

2w
, (2)
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where w is half value of the distance between the inner
and outer outlines of the character stroke.

The selection of discrete rotation angles θi has already
been demonstrated by Park et al.

[11], where it was shown
that orientations must be spaced uniformly, that is,

θi =
iπ

N
, i = {1, 2, · · · , N − 1} , (3)

where N is the number of orientations to be used. Ac-
cording to the statistical information of stroke directions
of the characters, four orientations are enough to extract
the information[10]. Since the stroke information of the
raised characters is the same as the Chinese characters,
θi are also set as 0◦, 45◦, 90◦, 135◦.

The response of the form in Eq. (1) at any location
(x, y) for an image I(x, y) can be calculated with the
convolution as

I(x, y; f, θ) =
∣

∣I(x, y) ⊗ Gφ(x, y; f, θ)
∣

∣ , (4)

where |•| represents a magnitude operator, ⊗ repre-
sents a convolution operator. The Gabor filter responses
in Eq. (4) represent the local features of the image at
different scale levels and orientations.

Figure 1 shows the local Gabor responses of a Chinese
character “5” and a raised character “7” with the above
parameters. The Gabor response in each orientation rep-
resents the stroke information of the same direction. The
sub-images in Figs. 1(b)—(e) give the stroke information
in horizontal, left-diagonal, vertical, and right-diagonal
directions respectively. Also, it can be found that the
Gabor filters with one single frequency and four orienta-
tions are enough to extract the stroke information of the
characters.

To overcome the rotation-variance and scale-variance
drawbacks encountered in local Gabor features, Han
et al.

[12] proposed an invariant Gabor representation
method. Considering a set of images with the same con-
tent, except under different orientations, for each image,
although the resulted signal energy distribution at each
scale level would be different from band to band, the to-
tal energy of the Gabor filters yielded in each band tends
to be quite constant, regardless the orientation angle of
the image and the number of scales involved. Likewise,
the Gabor filter responses under different scales, but
along the same orientation direction, could be summed
up for achieving scale invariance.

However, unlike rotation invariance, scale invariance is
inherently much more complicated. Note that rotation

Fig. 1. Local Gabor responses of Chinese character “5” and
raised character “7” with four orientations (0◦, 45◦, 90◦, 135◦)
at a single scale level. (a) Original images; (b)—(e) local Ga-
bor responses. It is noted that the frequency f0 chosen for
these two kinds of characters is different.

does not change the image. Any drastically down-scaling
could result in aliasing and greatly alter the original im-
age content. Therefore, generally speaking, scale invari-
ance could be reasonably achieved only when the scaling
factor is not too large and before the aliasing being in-
curred. The scale invariance claimed is imposed by this
assumption. In this paper, the Gabor filters designed for
raised characters have only one single scale and four ori-
entations, which satisfy the above assumption.

By calculating all the filters in Eq. (4) with four orien-
tations (θi, i = 1, 2, 3, 4) at a single scale (f0), the local
Gabor responses are obtained,

I(x, y; f0, θi) = |I(x, y) ⊗ G(x, y; f0, θi)| ,

i = 1, 2, 3, 4. (5)

A global Gabor feature space can be formed by gather-
ing the local Gabor responses with different frequencies
and orientations[13−16]. According to Eq. (5) and the pa-
rameters chosen as the above, the global feature matrix
is constructed as

Gf0 = (I (x, y; f0, θ0) I (x, y; f0, θ1)

I (x, y; f0, θ2) I (x, y; f0, θ3)). (6)

The global Gabor feature at a location (x, y) in Eq. (6)
can be summed over the whole image as

Gs =
∑

x

∑

y

(I (x, y; f0, θ0) I (x, y; f0, θ1)

I (x, y; f0, θ2) I (x, y; f0, θ3)). (7)

Because the Gabor responses are summed over the
whole image, the global Gabor feature in Eq. (7) is trans-
lation invariant. Also, because the scale information is
retained in the magnitudes of the features, but the ratio
between the magnitudes remains over different scales, a
scale invariant feature can be constructed by normalizing
the global feature matrix in Eq. (6) as

G′ =
Gf0

Gs
. (8)

In addition to scale invariance, normalization makes
the feature also illumination invariant. By summing the
Gabor feature in Eq. (8) with different orientations (θi,
i = 1, 2, 3, 4) at a single scale level f0, a rotation-invariant
feature can be obtained[12]. So, the rotation-invariant
feature can be calculated as

G =
∑

θi

G′, i = 1, 2, 3, 4. (9)

Thus, a global Gabor feature with translation, scale
and translation invariance is formed. Also, it is insen-
sitive to illumination changes. In order to verify these
properties, experiment was carried out with the raised
character images of different conditions. The size of
the character images is normalized to 50 × 50. The
final global Gabor feature is obtained through calculating
Eqs. (5)—(9). Figure 2 shows the results of the proposed
global Gabor features.

Figure 2(a) gives the global Gabor features of the char-
acter “3” with different rotation angles. It is found that



174 CHINESE OPTICS LETTERS / Vol. 6, No. 3 / March 10, 2008

Fig. 2. Global Gabor feature representations of different
raised characters. (a) Features of the character “3” with
different rotation angles; (b) features of “7” with different
sizes and “salt and pepper” noise; (c) features of “8” with
different illumination and position conditions.

the features provide good rotation invariance. Figure
2(b) shows the proposed Gabor representations of “7”
with different sizes and “salt and pepper” noise. The
small change of the Gabor feature tells its good perfor-
mance in scale invariance and insensitivity to noises. Fig-
ure 2(c) demonstrates the features of “8” with different
illumination and position conditions, which verify the
performance in translation invariance and robustness to
illumination conditions.

The recognition experiment was carried out with the
images of the raised characters pressed on label. In or-
der to find an optimal classifier for the global Gabor
features, the characteristics of the global Gabor feature
space is analyzed further.

Figure 3 shows the Gabor features of the raised char-
acter “7” and its rotated versions in Eq. (6) respectively.
The left column shows the original images and other four

Fig. 3. Gabor features of character “7” and its rotated ver-
sions with four orientations (0◦, 45◦, 90◦, 135◦). (a) Original
image and its Gabor responses; (b)—(d) anti-clockwise ro-
tated versions by 45◦, 90◦, and 135◦ respectively.

columns give their filter responses with 0◦, 45◦, 90◦ and
135◦ individually. It can be found from the sub-images
in Fig. 3 that when the image is rotated to a certain de-
gree, the local Gabor responses also change to the same
angle without changing the shape of Gabor features of
the original image. This means that the response of the
Gabor filter for a rotated image is equal to the response
of the correspondingly rotated filter for the original im-
age without rotation.

It also can be found in Fig. 3 that the sub-images with
the same indexing numbers 1, 2, 3, 4 have the same shape
but different orientations. So, this makes it possible to
find invariant feature of different orientations by using
simple matrix shift operations as

G(θ+k) = (G (1 : m, k : n)G (1 : m, 1 : k − 1)) , (10)

where G (i : j, u : v) represents the sub-matrix of G con-
taining rows i, · · · , j and columns u, · · · , v, m is the num-
ber of scales and n is the number of the orientations.
k = 1, 2, 3, · · · , n denotes the rotation index. Now, using
Eq. (10), a rotation-invariant squared Euclidean distance
measure can be defined as

d(G1, G2) = min
k

{

∑

θi

[

G′

1 (f0, θi) − G
′(θ+k)
2 (f0, θi)

]2
}

,

(11)

where G1 and G2 are feature vectors from two inspected
images. G′ (f0, θi) is the normalized global Gabor feature
matrix and G′(θ+k) (f0, θi) is the result of column-wise
shift operation in Eq. (10).

The character database is established by collecting the
numerals 0 − 9 with different orientations and illumina-
tion conditions, 30 samples for each numerals. Also, ten
samples of each numeral are added with “salt and pep-
per” noise to generate some new samples. All the images
of the samples are normalized to the size of 50 × 50. In
each class of numerals, one undisturbed image was se-
lected to generate a class-specific feature vector. Then
the features of a character were extracted and classified
to the most similar class by measuring the distance to all
class-specific feature vectors according to Eq. (11).

Also, in order to verify the effectiveness of the pro-
posed method, recognition experiments using the exist-
ing methods[1−4] were also carried out. Table 1 gives the
description of different features and the recognition re-
sults.

It can be found from Table 1 that the global Gabor
feature performs excellently compared with other meth-
ods. The classification accuracy of 98.3% achieved with
the proposed global Gabor feature tells that the pro-
posed features have good separate capability. The sam-
ples with different conditions successfully classified verify
that the proposed feature have good performance in ro-
tation, translation and scale invariance and also provide
robustness to illumination and noise changes.

Having the Gaussian shape both in the frequency and
spatial domains, the Gabor filters can be considered as
spatially concentrated band-pass filters that are localized
in the two domains. Thus, disturbances in a distinctly
different location do not affect the filter responses. In
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Table 1. Recognition Experimental Results

Feature Description Number of Number of Characters Recognition

Total Samples Successfully Classified Rate (%)

BF Features Based on Binary Images[1] 400 364 91.0

TF Topographical Features[2] 400 383 95.8

EF Edge Features[3] 400 369 92.3

DCT DCT Transform-Based Method[4] 400 386 96.5

LGAB Local Gabor Features 400 327 81.8

GGAB Global Gabor Features 400 393 98.3

DCT: discrete cosine transform.

Table 2. Recognition Rates (in %) of Character
Images with Gaussian Noises

Gaussian Noise (0, σ2) 0 0.05 0.1 0.5

GGAB 98.3 97.3 96.8 95.5

TF[2] 95.8 93.0 82.3 75.8

DCT[4] 96.5 94.8 91.5 88.3

Fig. 4. Reconstruction of image using Gabor filter
coefficients. (a) Original images of a single character “7”
and a whole image; (b) reconstructed images.

order to verify this property of Gabor filters, samples
are also added with Gaussian noise (0, σ2) with different
variance. The results shown in Table 2 tell that the global
Gabor feature has the best performance for images with
noises.

Since the Gabor filters can be able to detect the local
stroke information of a character, the whole information
of the character can also be reconstructed by gathering
the responses of the Gabor filters. An iterative thresh-
old technique[17] that minimizes the reconstruction error
is introduced to recover the stroke shape from the Ga-
bor responses. The representation power of the Gabor
features is demonstrated in Fig. 4 ,which shows the re-
construction images of a single character “7”and a whole
image. It can be seen that the Gabor filters are able to
capture the key information of the character. Also, the
images reconstructed emphasize more details about the
character itself and weakened the background simultane-
ously.

In this paper, the 2D Gabor filters are applied to the
raised character recognition. Based on the local Gabor
feature of the raised characters, the global Gabor fea-
ture is established. Experiment results show that the
global Gabor feature has good separate capability and

good performance in rotation, translation and scale in-
variance. Also, the proposed feature has great robustness
to illumination and noise changes. Moreover, the Gabor
feature has great reconstruction power. Another good
point found in this work is that the proposed global Ga-
bor feature extraction method only requires few summa-
tions over the filter responses of the conventional Gabor
filters, so it costs less computation time compared with
other methods. The studies in this paper verify that
Gabor filters can be reliably used in low-level feature ex-
traction in image processing and the filter responses can
be used to construct robust invariant recognition system.

J. Li’s e-mail address is lijianmei@sdu.edu.cn.
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